SUBROUTINE CGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, W,
     $                   WORK, RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          TRANSA, TRANSE, TRANSW
      INTEGER            LDA, LDE, N
*     ..
*     .. Array Arguments ..
      REAL               RESULT( 2 ), RWORK( * )
      COMPLEX            A( LDA, * ), E( LDE, * ), W( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CGET22 does an eigenvector check.
*
*  The basic test is:
*
*     RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
*
*  using the 1-norm.  It also tests the normalization of E:
*
*     RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*                  j
*
*  where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
*  vector.  The max-norm of a complex n-vector x in this case is the
*  maximum of |re(x(i)| + |im(x(i)| over i = 1, ..., n.
*
*  Arguments
*  ==========
*
*  TRANSA  (input) CHARACTER*1
*          Specifies whether or not A is transposed.
*          = 'N':  No transpose
*          = 'T':  Transpose
*          = 'C':  Conjugate transpose
*
*  TRANSE  (input) CHARACTER*1
*          Specifies whether or not E is transposed.
*          = 'N':  No transpose, eigenvectors are in columns of E
*          = 'T':  Transpose, eigenvectors are in rows of E
*          = 'C':  Conjugate transpose, eigenvectors are in rows of E
*
*  TRANSW  (input) CHARACTER*1
*          Specifies whether or not W is transposed.
*          = 'N':  No transpose
*          = 'T':  Transpose, same as TRANSW = 'N'
*          = 'C':  Conjugate transpose, use -WI(j) instead of WI(j)
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The matrix whose eigenvectors are in E.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  E       (input) COMPLEX array, dimension (LDE,N)
*          The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
*          are stored in the columns of E, if TRANSE = 'T' or 'C', the
*          eigenvectors are stored in the rows of E.
*
*  LDE     (input) INTEGER
*          The leading dimension of the array E.  LDE >= max(1,N).
*
*  W       (input) COMPLEX array, dimension (N)
*          The eigenvalues of A.
*
*  WORK    (workspace) COMPLEX array, dimension (N*N)
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESULT  (output) REAL array, dimension (2)
*          RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
*          RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*                       j
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      CHARACTER          NORMA, NORME
      INTEGER            ITRNSE, ITRNSW, J, JCOL, JOFF, JROW, JVEC
      REAL               ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1,
     $                   ULP, UNFL
      COMPLEX            WTEMP
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANGE, SLAMCH
      EXTERNAL           LSAME, CLANGE, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM, CLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, CONJG, MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
*     Initialize RESULT (in case N=0)
*
      RESULT( 1 ) = ZERO
      RESULT( 2 ) = ZERO
      IF( N.LE.0 )
     $   RETURN
*
      UNFL = SLAMCH( 'Safe minimum' )
      ULP = SLAMCH( 'Precision' )
*
      ITRNSE = 0
      ITRNSW = 0
      NORMA = 'O'
      NORME = 'O'
*
      IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN
         NORMA = 'I'
      END IF
*
      IF( LSAME( TRANSE, 'T' ) ) THEN
         ITRNSE = 1
         NORME = 'I'
      ELSE IF( LSAME( TRANSE, 'C' ) ) THEN
         ITRNSE = 2
         NORME = 'I'
      END IF
*
      IF( LSAME( TRANSW, 'C' ) ) THEN
         ITRNSW = 1
      END IF
*
*     Normalization of E:
*
      ENRMIN = ONE / ULP
      ENRMAX = ZERO
      IF( ITRNSE.EQ.0 ) THEN
         DO 20 JVEC = 1, N
            TEMP1 = ZERO
            DO 10 J = 1, N
               TEMP1 = MAX( TEMP1, ABS( REAL( E( J, JVEC ) ) )+
     $                 ABS( AIMAG( E( J, JVEC ) ) ) )
   10       CONTINUE
            ENRMIN = MIN( ENRMIN, TEMP1 )
            ENRMAX = MAX( ENRMAX, TEMP1 )
   20    CONTINUE
      ELSE
         DO 30 JVEC = 1, N
            RWORK( JVEC ) = ZERO
   30    CONTINUE
*
         DO 50 J = 1, N
            DO 40 JVEC = 1, N
               RWORK( JVEC ) = MAX( RWORK( JVEC ),
     $                         ABS( REAL( E( JVEC, J ) ) )+
     $                         ABS( AIMAG( E( JVEC, J ) ) ) )
   40       CONTINUE
   50    CONTINUE
*
         DO 60 JVEC = 1, N
            ENRMIN = MIN( ENRMIN, RWORK( JVEC ) )
            ENRMAX = MAX( ENRMAX, RWORK( JVEC ) )
   60    CONTINUE
      END IF
*
*     Norm of A:
*
      ANORM = MAX( CLANGE( NORMA, N, N, A, LDA, RWORK ), UNFL )
*
*     Norm of E:
*
      ENORM = MAX( CLANGE( NORME, N, N, E, LDE, RWORK ), ULP )
*
*     Norm of error:
*
*     Error =  AE - EW
*
      CALL CLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
*
      JOFF = 0
      DO 100 JCOL = 1, N
         IF( ITRNSW.EQ.0 ) THEN
            WTEMP = W( JCOL )
         ELSE
            WTEMP = CONJG( W( JCOL ) )
         END IF
*
         IF( ITRNSE.EQ.0 ) THEN
            DO 70 JROW = 1, N
               WORK( JOFF+JROW ) = E( JROW, JCOL )*WTEMP
   70       CONTINUE
         ELSE IF( ITRNSE.EQ.1 ) THEN
            DO 80 JROW = 1, N
               WORK( JOFF+JROW ) = E( JCOL, JROW )*WTEMP
   80       CONTINUE
         ELSE
            DO 90 JROW = 1, N
               WORK( JOFF+JROW ) = CONJG( E( JCOL, JROW ) )*WTEMP
   90       CONTINUE
         END IF
         JOFF = JOFF + N
  100 CONTINUE
*
      CALL CGEMM( TRANSA, TRANSE, N, N, N, CONE, A, LDA, E, LDE, -CONE,
     $            WORK, N )
*
      ERRNRM = CLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM
*
*     Compute RESULT(1) (avoiding under/overflow)
*
      IF( ANORM.GT.ERRNRM ) THEN
         RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( ERRNRM, ANORM ) / ANORM ) / ULP
         ELSE
            RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP
         END IF
      END IF
*
*     Compute RESULT(2) : the normalization error in E.
*
      RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) /
     $              ( REAL( N )*ULP )
*
      RETURN
*
*     End of CGET22
*
      END